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Abstract 

The challenges that a designer faces in modelling shapes of arbitrary topology are well supported by 

the so-called H-rep concept, which is based on the tangent plane continuous interpolation of an  

arbitrary network of intersecting curves. Until recently, making general design changes in stages of  

detailed design was not well supported. A simple and efficient method is proposed to overcome th is 

limitation in the H-rep, acting on points positioned on the surface. An effective design tool has  

evolved that allows feature curves to be manipulated regardless of detail, without negative effects on 

other design features. 

1. Introduction 

An effective modelling methodology for the design of non -trivial free-form shapes is the transfinite 
interpolation of an irregular network of curves. Recent literature refers to this methodology with the  
term H-rep, to indicate that it is based on the mergence of two mode lling concepts, namely wire-
frame modelling and solid modelling. In practice, the term H-rep also implies the integration of a 
curve fitting/fairing algorithm, which is essential for the discussions in this article.  Koelman (1999) 
gives a detailed description of the conception of the H-rep concept, and of an implementation called  
fairway

TM, which is tailored to (but not limited to) the geometric design of ship hulls. Introductions to 
the H-rep concept and its value for the maritime industry include  Koelman et al. (2001) and last 
year’s presentation Koelman (2003).  
 
In essence, Koelman’s implementation restores the traditional way of lines plan draughting in a  
computer method. To the user, the system presents itself as a curve modeller. The surface generatio n 
is kept completely under the hood, which consists of filling the mesh cells of the curve network with 
transfinite surface patches. These may have an arbitrary number of sides and are tangent -plane 
continuous across shared boundaries. Among the advantages  of this modelling concept are the 
absence of topological restrictions on surface features, the independence of curves and their detail,  
and tight control over the exact shape of the surface.  
 
Typically, when starting a design from scratch using this syste m, the designer starts with an initial  
model defined by a contour line, a deck line and a mid-ship ordinate. These curves are computer-
generated, based on user-defined main dimensions. The shape of the surface patches is completely  
derived from the shape of the curves, so the only means to control the shape of the model is through 
manipulation of curves. Thus, the first step in the design process is to modify the existing curves to  
their correct shape, by traditional control point manipulation. When the sur face is visualised at this 
stage, the designer will likely not be satisfied with the composite shape of surface patches. The  
patches are still large and the defining curves are too far apart to describe every detail that is  
envisioned for the design. The solution is to add more curves to the network, effectively splitting up  
patches into smaller ones. New curves can be generated automatically by intersecting the model with 
a user-defined plane, or by projecting a separate curve onto the surface. After addit ion of a new 
curve, the shape of newly split patches can be modified by manipulating the curve. With this process, 
the shape of a sculpted model evolves from a course definition to a detailed definition, until the  
designer is satisfied with the result.  
 
There is a downside to this modelling methodology. As the design progresses and more curves are  
added to the model, more of its shape is rigidly defined. The more curves present, the smaller the  
surface patches, and the more local shape manipulations become.  The presence of more curves also  
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means that the number of intersections that a curve has with other curves, increases. As a result,  
during curve manipulation, there is a higher risk that the curve is pulled away from these  
intersections, causing serious defects in the surface. Currently, no mechanism is implemented that  
prevents this, or that resolves the incompatibilities. Although it is possible to restore the intersections 
manually, by adjusting all affected curves to the changes, this is a lengthy, ite rative task. 
 
Consequently, making design changes that affect larger surface areas of the model, is discouraged at  
late design stages. One could say that designing sculpted shapes  this way, in practice is a one-
dimensional process because the design has a preference to evolve only in one direction.  This paper 
proposes a simple and efficient method for  shape manipulation of a dense curve network that  is not 
strictly local and does not destroy the consistency and the geometric continuity of the network.  This 
makes it possible to migrate directly from one shape variation to the other, by which the design  
process becomes, in our way of speaking, multi-dimensional. 

2. Background 

In the computer-aided design (CAD) of free-form or sculpted shapes, so-called Non-Uniform 
Rational B-Spline (NURBS) surfaces enjoy great popularity. NURBS surface patches derive their  
geometry from control points that they approximate. Whether their popularity is justified, is  
debatable. The challenge of designing sculpted shapes boils down to two main problems. These are 
the problem of geometric continuity and the problem of control.  
 
A single NURBS surface patch without degenerate sides 1 fits only well to deformations of the square, 
the cylinder and the torus—of which only the torus can describe the boundary of a solid. All other 
geometries, thus including most subjects of design, are denoted as having arbitrary topology. For a  
composition of (non-degenerate) patches to describe shapes of arbitrary topology, the patches must be 
allowed to be organised in an arbitrary manner, where the number of patches that mutually connect  
with one of their corners is not always four. Maintaining geometric continuity, i.e., a smooth  
composite surface, is especially difficult at these irregular points.  
 
The problem of control is implied by the fact that NURBS surface patches approximate a regular grid 
of control points. The problem becomes eminent, e.g., when more control points are needed locally,  
in order to define some local detail in a surface patch. Since  extra control points can only be added in 
complete rows or columns, they also appear in regions where they are not wanted, because they make 
achieving surface fairness more difficult.  
 
Transfinite surface patches, which derive their geometry from curves that they interpolate, do not 
suffer from a control problem, as the patch does not care how its bounding curves are defined. For  
adjacent transfinite patches to connect with tangent plane continuity, tangent information is required  
along the curves, which is represented by so-called tangent ribbons. In order to model arbitrary  
topology, the curve network must also be arbitrary, i.e., without regularity requirements 2. Jensen et 

al. (1991) were the first to develop a technique for the generation of tangent rib bons on such 
networks by using a boundary representation (B-rep3), which is a data structure used primarily in  
solid modelling. Their field of application was automotive styling.  Van Dijk (1994) took this to 
conceptual industrial design and Michelsen (1995) to naval architecture. 

                                                           
1 A degenerate side is a side that is collapsed to a single point. The resulting singularity makes maintaining  
geometric continuity difficult. 

2 The only requirement on curves is that they intersect and not cross each other (within some tolerance) and that 
they start and end at other curves. 

3 A B-rep data structure describes the boundary of a solid, consisting of the three types of topological elements  
of “node”, “edge” and “face”. References exist in the data structure such that for each element, its neighbouring 
elements can be determined. The orientation of the faces, i.e., which side is facing inward or outward, is  
implicitly defined by the ordering of references.  
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Although having developed an alternative to NURBS surface modelling without the associated  
problems, it remained a challenge to keep the curve network simultaneously fair and consistent as a  
surface representation. By integrating a curve fitting and fairing algorithm, Koelman (1999) was able 
to improve that situation, and produced the described implementation for the geometric design of ship 
hulls, at production quality. In addition, he removed the need for the user to worry about surface 
patches, by following up on the suggestion by  Michelsen to use the B-rep to its full potential as a 
solid representation. 
 
In Fig.1, the hybrid nature of the H-rep is clearly visible. The nodes in the B-rep refer to intersection 
points in the wire-frame for their geometry. The edges refer to the curve sections in -between the 
intersection points and the faces refer to the n-sided patches that can be generated to fill the openings 
in the wire-frame. Tangent ribbons are also partly indicated. 

 

Fig.1: The hybrid representation with references between topology and geometry.  

3. Related Research 

The problem of the global shape of a model getting fixated by the definition of details is not specif ic 
to the H-rep and its precedents. It also exists in systems that are based on approximation of control  
points such as NURBS surfaces, although the consequences are not as dramatic as the surface defects 
that can arise in an H-rep. If a surface region is to be modified for which a larger number of control  
points need to be shifted, this must be done in a way that preserves the coherence between the control 
points, so that both the global shape remains fair and the detailed surface features are not damaged.  
This has been addressed by the integration of physics based properties (Terzopoulos and Qin, 1994), 
(Léon and Trompette, 1995) and hierarchical refinement (Forsey and Bartels, 1988). These 
references do not explicitly consider arbitrary topology however.  The hierarchical refinement 
principle has also been proposed for the so-called surface splines (Gonzales-Ochoa and Peters, 

1999), which approximate an arbitrary mesh of control points and thus support models with arbitrary  
topology. Contrary to plain NURBS surfaces, the result may be a viable alternative to the H -rep. 
 
Free-form deformation (FFD) (Sederberg and Parry, 1986) is a technique to reshape a geometric  
model indirectly by warping the space in which it is defined. FFD is independent of the model  
definition, and thus competes with the method presented here.  
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4. Manipulation of Sets of Data Points 

We will state our problem as follows. “Given a certain region on a surface that interpolates a network 
of curves, manipulate all curves in that region simultaneo usly, in a way that does not destroy the 
consistency of the network and does not introduce unwanted geometric discontinuities”.  
 
We note that the details behind the process of adding a new curve consist of tracing a string of data  
points over the surface, as a sampling of the intersection curve or the projected curve. Then the  
fitting/fairing algorithm is invoked to generate a curve through these points, which is added to the  
model. During manipulation of curves (and thus the surface) these data points can  be made to move 
with the curve, so that they indeed remain positioned on the surface. If we assume for the moment  
that all data points are persistent, meaning that they remain in existence throughout the modelling  
process, then the complete model can be regenerated from the data points and the B-rep alone4, with 
the help of the fitting/fairing algorithm. Thus, we can reformulate the problem as, “Given a point set 
belonging to a consistent H-rep, shift a selection of points to a new position, so that the dis tance and 
the direction of the shift of each individual point varies smoothly over the set”.  
 
We will now assert our assumption. Data points that are associated with intersections between curves 
are persistent, because they represent the geometry of node elements in the B-rep. Currently, other 
data points are not persistent, as they serve no purpose after the creation of a curve. Nevertheless, in a 
dense curve network, there will likely be enough intersections (and thus persistent data points) to  
record the shape of the curves. A simple heuristic can verify this, e.g., by checking whether the  
number and distribution of data points belonging to a curve stands in proportion to the number and  
distribution of control points of the curve. If the verification fail s, extra data points can be inserted at 
low computational cost. 

4.1. Shift Vectors 

Let us declare si to be the shift vector for a data point i, i.e., the difference between the position of  
that point after and before the shape modification. We will define this  shift vector as the vector sum 
of the sample of one or more three-dimensional vector fields.  
 
A vector field is primarily defined by a  selection field j of varying intensity, which is concentrated  
around a point, a curve or a surface, which we will call th e base of the selection field. This base may 
be part of the model, or be dedicated to support the selection field. The intensity fj of the field will be 
unity at its base, decreasing smoothly with increasing distance d to the base, and level off to zero at a 
distance rj to the base, which we will call the extent of the selection field. If the base is singular, rj is 
a constant; but if the selection field is based on a curve (or surface), rj may be a function of the curve 
parameter (or surface parameters)5. In a similar fashion, we will define a vector on the base, whose  
length and direction may be a function of the base parameters. We will call this vector the  typical 

shift vector of the selection field, denoted by Sj.
 

 
In addition to a selection field, one or more deselection fields, enumerated by k, may take part in the 
definition of a vector field. Deselection fields reverse the effect of the selection field. Their definition 
is similar to the definition of selection fields, except that they lack a typical  shift vector and their 
intensity gk is opposite to the intensity of selection fields: unity outside their extent, smoothly  

                                                           
4 Actually, this is a slight simplification, as Koelman´s implementation supports curves to be composed of  
shorter curve sections. The end-conditions of a curve section may be dictated by the adjacent section in a  
master/slave fashion. This information can easily be conserved throughout a surface modification.  

5 In order to guarantee that vectors in the field vary sm oothly, we must require that the radius of curvature of the 
selection base is at least as large as its extent, everywhere. Neither may two distinct parts of the same base  
come closer than the sum of the extents at those parts. I.e., selection fields must n ot self-intersect. 
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decreasing in proportion to the distance d to the base inside their extent, and levelling off to zero at  
their base. 
 
The vector field is then defined as the typical shift vector, evaluated on the closest point on the base, 
multiplied by the selection field intensity and the deselection field intensities. Especially for  
deselection fields it is interesting to have them act differently  on the x, y and z coordinates of the 
vectors in the field, and thus we will redefine field intensities as diagonal matrix functions:  
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in which we have normalized the support of the intensity functio ns with respect to the extent of the 
respective field. If we then say gk,y(d/rk) = 0 for a deselection field based on the plane  y = 0, we 
accomplish that data points in that plane will only shift in that plane and not away from it, regardless 
of the direction of the typical shift vector. This is advantageous if the design is symmetrical around  
y = 0 and only one half of it is being modelled.  
 
The definition of the shift vector can now be formalised as  

j k

jjijkiki dd Sfgs ,, . (2) 

Here di,j denotes the shortest distance through space from the data point i to the closest point on the 
base of selection field j, and Sj and fj are evaluated at that position on the base. Analogously,  di,k 
denotes the shortest distance through space from the data point  i to the closest point on the base of 
deselection field k, and gk is evaluated at that position on the base. What remains is to find suitable  
definitions for the selection functions f and g, and for the typical shift vector S. 

4.2. Selection Functions 

Any function that behaves as described will give useful results. For more control of the shape of the  
resulting modification, one may want to vary the shape of the selection function over the base of the  
selection, as a function of the base parameters. This is possible in the  following definition of a cubic 
piecewise polynomial, in which a parameter κ [0,1] defines how fast the function falls off.  
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in which u has been substituted for di,j/rj for simplicity. This function, plotted in Fig.2, is derived 
from the Cox-deBoor recursive definition of B-spline basis functions. The selection function of 
deselection fields can simply be defined as fg 1 .  
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Fig.2: The selection function defined by equation (3). Smaller values of κ make the function fall off 
faster. Plotted are κ=1.0, which is point-symmetric about (0.5,0.5), κ=0.8, κ=0.5, κ=0.2 and κ=0.0. 

4.3. Typical Shift Vector 

A selection field with a singular base can very well be based on a data point on the surface. It will be 
natural to take the surface normal at that point as the typical shift vector, scaled up or down if  
necessary. 
 
For selection fields that are based on a curve, a powerful modelling tool results if the typical shift  
vector can be varied along the curve. Put simply, the shift vector can be defined as the difference  
between the base curve, say c(t), and an other curve, say )ˆ(ˆ tc . If c(t) is a curve on the surface prior to 

the shape modification, then )ˆ(ˆ tc  is exactly what the model will look like at this location, after the  

modification. Thus, designers will be able to manipulate feature curves, or even completely redesign  
them, while they will be able to control how the other curves (and thus the surface) in their vicinity  
adapts to the changes with the parameters  r and κ. In addition, they will be able to protect other  
feature curves during the modification, by basing a deselection field on them.  
 
To make this principle work as expected, it needs to be somewhat refined. As  )ˆ(ˆ tc  may be 

completely different from c(t), their parameterisation may not be similar. In other words, when two  
particles are considered, one travelling down each curve at proportional increments of  t̂  and t, the 
variation in velocity of the two particles may not  be parallel. The effect on the typical shift vector  
will be that it changes direction more often than necessary. We will remedy this by evaluating the  
curves with respect to arc length. In addition, if  c(t) is a feature curve, the designer may not want to  
vary the complete curve, and )ˆ(ˆ tc  may partly coincide with c(t). But due to the different lengths of 

c(t) and )ˆ(ˆ tc , the typical shift vector may still have non-zero length in these parts, which is not 

intended. To counter this, we must evaluate the curves only over the curve sections that actually have 
different geometries. 
 
Say that the curves c(t) and )ˆ(ˆ tc  differ from each other for ba , ttt  and .ˆ,ˆˆ dc ttt , with 

endbabegin tttt  and enddcbegin ˆˆˆˆ tttt . For other parameter values, the curves coincide,  

although not necessarily for equal parameter values. The exact value of  ta, tb, ct̂  and dt̂  can be 
determined by analysis of the control points and knot vectors of the curves. For a formal definition of 
the shift vector, we need a mapping ttm ˆ: . For a certain parameter value  ti, m(ti) must produce a 

jt̂  so that the arc lengths of the curve sections on either side of these parameter values are  

proportional: 
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in which the arc length of a curve is defined as the integral of the length of the first derivative of that 
curve with respect to the curve parameter. Because  m is inefficient to be evaluated directly, one  
should first assess whether arc length evaluation is at all worthwhile, by comparing internal knot  
spacings and control point distances of c(t) and )ˆ(ˆ tc , looking for large discrepancies. If  so, the map 

m may be approximated by evaluating m(t) at distinct values of ti, and fitting a polynomial, say )(ˆ tm , 

through the mapped values jt̂ . 

 
Now we are able to define the typical shift vector  S as the difference between relating positions on 
the two curves according to arc length, expressed as a function of the curve parameter t: 

)())(ˆ(ˆ)( ttmt ccS . (5) 

4.4. Unintended Selections 

The proposed method for shape modification is obviously simple, as we are not regar ding the surface 
of the model at all, and only consider data points and their shortest distance to selection bases. The  
advantage is speed. Shift vectors can be computed quickly enough to visualise them in real time,  
while the designer manipulates the modification parameters. They give a sufficient indication of how 
the shape will be modified once the parameters are accepted. Therefore, the presented method for  
shape modification is interactive to a great extent.  
 
However, in some situations this approach can be too simple. For instance, when modifying an area  
on the upper side of a thin wing. Because the data points on the under side are close to the upper side, 
they may be selected unintentionally. Even though this may be prevented by careful definition of  
deselection fields, there is an alternative that can be automated, which involves putting the B-rep to 
good use. 

Table I: Pseudo-code of an algorithm that only shifts contiguous sets of data points . 

Let A be an empty set, capable of containing node refere nces 
Mark all nodes and faces in the B-rep as unconsidered 
Mark the root node as considered and add it to A 
While A is not empty { 

Compute si for a node ?i  

If ,0is  then { 

For all faces j that are adjacent to node i and that are still unconsidered { 
Mark j as considered 
For all nodes k that are adjacent to j and that are still unconsidered { 

Mark k as considered and add it to A 
} 

} 
shift node i 

} 
remove i from A 

} 
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Let us define the root node of a selection field as the node that references the data point that is closest 
to the base of the selection field. If there are several nodes that qualify, any one of these will do. The 
algorithm listed in Table I will only shift data points that form a contiguous selection that is rooted at 
the base, and prune away isolated sets of selected data points that are separated from the main  
selection by more than one surface patch.  

5. Finishing Up 

Once the fitting/fairing algorithm has re -interpolated the curves over the shifted data poin ts, the H-rep 
has become a consistent and smooth modification from the original, by which we have succeeded in  
our objective. However, if the original primarily consisted of plane curves, such as is customary in  
the design of ship hulls, these may no longe r be planar after the modification. 
 
Plane curves can be restored by intersecting the modified model with the planes in which the curves  
were originally defined, and adding the intersection curves to the model. These new curves take over 
the definition of the modified shape, by which the old curves become redundant and may be removed.  
 

 

Fig.3: Modification of the hull of a frigate (shaded surface and light grey wire-frame) together with 
the original shape (black wire-frame overlay).  
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6. Applications 

Fig.3 shows how the foreship of a frigate has been made slightly narrower. The selection base was a 
point on the hull, and the shift was in transverse direction. Note that the system has no difficult ies 
with the knuckle line that is present in this region. A critique on this particular shape variation may  
be that the shell near the stem contains too much of the original shape, resulting in an extra inflection. 
This is due to the shape of the deselection function that was chosen to constrain the shell to the plane 
of symmetry, as the value of κ in equation (3) was set to 1.0, see also Fig.2. A value of 0 would have 
been better in this regard. Optimal would have been not to base the deselection field on the plane of  
symmetry, but on the contour line itself. Then κ could have been varied along it, 0 where the stem is 
sharp and non-zero elsewhere. 
 

   

Fig.4: Three successive curve-based selections were sufficient to turn a plain bow (white wire -frame) 
into a bulbous bow. 

 
Shape variations resulting from a curve-based selection are shown in Fig.4, illustrating that the 
method provides a powerful modelling tool. It shows all three steps in the process of designing a bulb 
where there was none before. Starting off  with the same model as in Fig.3, the first step was to re -
design the stem curve (left). An auxiliary waterline was added ending in the fore -most position of the 
bulb, just below the second ordinary waterline counted from below. On this line the second selection 
was based, giving the bulb more body (middle). Finally, the lowest waterline was  dragged slightly 
outward, to improve the shape of the frames in the lower region (right). At the top of the bulb a dent 
can be seen, which is due to scarce geometric data. This was corrected with two extra frames and one 
extra waterline, as displayed in Fig.5. 

6.1. Performance 

Shape variations with selections that are based on points and planes are fast operations. However,  
curve-based selections can be time consuming, because computing the global closest distance of a  
point to a curve is an expensive operation. In the current implementation, which is not for production 
and serves proof of concept only, all data points in the entire model are processed. Depending on the 
length and complexity of the curve, the time needed for distance computations in the examples  of 



 221 

Fig.4 took up to several minutes on a 1.5 GHz PC. Once the distances are computed though,  
previewing the shift vectors happens at interactive rates.  
 
This performance can be improved in several ways. Firstly, it may be possible to leave out several  
iterations of the closest point finding algorithm per data point, if the loop termination is not based on 
the accuracy of the closest point, but on the accuracy of the resulting shift vector. Secondly, it may be 
possible to disregard data points on curves that were never manipulated since they were added to the 
model. These curves do not actually contribute to the definition of the shape, and serve only for  
surface visualisation, surface quality interrogation and/or manufacturing (e.g., frame contours and the 
butts and seams of shell plating). In late stages of the design, there may be many of these curves.  
Unless the resulting shape has so much detail that the extra curves actually do contribute to the  
definition of the new geometry, they can safely be deleted  before the shape variation and restored 
afterwards. A heuristic based on the typical shift vector can determine this possibility. Finally, the  
shape variations that are discussed here rarely involve every single data point in the model; in case it 
does, an ordinary affine transformation probably performs better. So computing the distance for all  
data points is a waste of time. Much better would be to consider data points on demand, based on the 
extent of the selection. For this a graph search is required, similar in nature to the algorithm discussed 
in section 4.4. 

 

Fig.5: Extra defining data is added to ion-out the dent in the upper part of the bulb.  
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7. Conclusion 

A simple method for the modification of a network of intersecting curves was presented, which  
preserves the consistency of the network, the fairness of the surface and local surface features. It has 
been found that feature curves may be redesigned explicitly, regardless of the detail in a design. This 
can be regarded as an advantage over the competi ng method of free-form deformation (FFD). 
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